Storm Front
Coronal mass ejections occur at a rate of a few times a week to
several times per day, depending on how active the Sun may be.
And because of the size of the plasma clouds they produce, the
odds say Earth is going to get hit by a CME from time to time.
Fortunately, our planet is protected from the harmful effects of
the radiation and hot plasma by our atmosphere and by an invisible
magnetic shell known as the magnetosphere. Produced as a result
of Earth's own magnetic field, the magnetosphere shields us from
most of the Sun's plasma by deflecting it into space.
But some energetic particles do enter the magnetosphere from time
to time, funneling in near the North and South Poles, where the
magnetic field is weakest and the magnetosphere is partially open
to space. The rain of plasma into our magnetosphere can induce
magnetic storms, alter Earth's magnetic field as measured on the
ground, and produce the phenomena known as auroras.
at high altitudes.
Finally, some of the excited particles in the radiation belts can
plunge into the upper atmosphere, where they collide with oxygen
and nitrogen. These collisions-which usually occur between 40 and
200 miles above ground-cause the oxygen and nitrogen to become
electrically excited and to emit light (fluorescent lights and
televisions work in much the same way). The result is a dazzling
dance of green, blue, white, and red light in the night sky, also
known as aurora borealis and aurora australis ("northern and
southern lights"). Auroras can appear as colorful, wispy curtains
of light ruffling in the night sky, or sometimes as diffuse,
flickering bands. Either way, they tell us that something electric
is happening in the space around Earth.
|
Comments/Questions/Suggestions:
Webmaster
Official NASA Contact:
ISTP-Project
/ NASA Home /
Goddard Space Flight Center Home
/