Para ver más billetes con físicos famosos, haga click aquí |
Resumen--hasta aquí:
|
El Sistema MKS y el "newton"Considere la caída libre producto de la gravedad. La fuerza de gravedad es proporcional a la masa m, de manera que podemos escribir
en donde g es la aceleración de la gravedad, dirigida hacia abajo. Efectivamente, la proporcionalidad nos permite agregarle al lado derecho la constante de multiplicación correcta, pero no lo haremos por que lo que queremos hacer es definir algunas unidades de F. Todas las fórmulas y unidades cuantitativas en física dependen de las unidades en las cuales las tres cantidades básicas son medidas--distancia, masa y tiempo. Permítanos por lo tanto escoger a partir de ahora el medir la ditancia en metros, la masa en kilogramos y el tiempo en segundos. Esa convención es conocida como el sistema MKS: en tanto las fórmulas contengan solo cantidades obtenidas por este sistema, ellas serán consistentes y correctas. Pero tenga cuidado... si por error mezcla las unidades MKS con gramos o centímetros ( o libras y pulgadas), puede terminar con unos resultados bastante extraños!
En el sistema MKS el valor efectivo de g varía desde 9.78 m/s2 en el ecuador, hasta 9.83 m/s2 en los polos, debido a la rotación de la Tierra (vea la sección #24a). La ecuación (1) no solo muestra que el peso es proporcional a la masa, sino que---asumiendo que es medido en kilogramos--- introduce una unidad de F, llamada (¡no es sorpresa!) "newton." De acuerdo a esa ecuación, una fuerza de 1 newton actuando sobre un kilogramo de masa lo acelera en 1 m/sec2, de manera que la fuerza de gravedad sobre un kilogramo de masa es aproximadamente 9.8 newtons. Con anterioridad esto se llamaba "una fuerza de un kilogramo de peso", una unidad conveniente para aplicaciones generales, (1 kg = 9.8 newton), pero no para aplicaciones exactas, debido a la variación de g alrededor del globo.
Segunda Ley de NewtonAhora podemos expresar en números la dependencia de la aceleración en la fuerza y la masa. Lord Kelvin, un importante científico Británico en la época de la Reina Victoria, fue citado diciendo alguna vez
De acuerdo a la segunda ley de Newton, la aceleración de un objeto es proporcional a la fuerza F actuando sobre ella e inversamente proporcional a su masa m. Expresando F en newtons obtenemos a--para cualquier aceleración, no solamente para la caída libre--de la siguiente forma
Debemos notar que ambas a y F no solo tienen magnitudes, sino también direcciones--ambas son cantidades vectoriales. El denotar vectores (en esta sección) mediante letras en negritas, hace que la segunda ley de Newton sea leída adecuadamente:
Esto expresa el enunciado anterior "se acelera en la dirección de la fuerza." Muchos libros de texto escriben pero la ecuación (3) es la manera en que se utiliza normalmente--F y m son las entradas, a es el resultado. El ejemplo abajo debe de esclarecer esto.
Ejemplo: el cohete V–2El cohete militar V–2, utilizado por Alemania en 1945, pesaba aproximadamente 12 toneladas (12,000 kg) cargado con combustible y solo 3 toneladas (3,000) vacío. Su motor creaba un empuje de 240,000 N (newtons). Aproximando g a un valor de 10m/s2, ¿cuál era la aceleración del V–2 (1) al despegar, (2) justo antes de terminarse el combustible?Solución Haga que la dirección hacia arriba sea positiva, la dirección hacia abajo negativa: utilizando esta convención, podremos trabajar con números en lugar de vectores. Al despegar, dos fuerzas actúan sobre el cohete: un empuje de +240,000 N, y el peso del cohete cargado, mg =–120,000 N (¡si el empuje fuera menor a 120,000 N, el cohete nunca se levantaría!). La fuerza total hacia arriba es por lo tanto
y la aceleración inicial, de acuerdo a la segunda ley de Newton, es
Asi, el cohete comienza a elevarse con la misma aceleración que una piedra al comenzar a caer. Al irse consumiendo el combustible, la masa m decrece pero la fuerza no, así que esperamos que a se haga aún más grande. Al acabarse el combustible, mg = –30,000 N y tenemos
dando El hecho que la aceleración se incremente al irse quemando el combustible es particularmente importante durante los vuelos espaciales tripulados, cunado la carga incluye a astronautas vivientes. Al darle al cuerpo de un astronuata una aceleración de 7 g, este experimentará una fuerza de hasta 8 veces su peso (¡la gravedad aún contribuye!), creando una tensión excesiva (3–4 g es probablemente el límite sin trajes especiales). Es difícil controlar el empuje de un cohete, pero un cohete de varias etapas puede desprender la primera etapa antes de que a se haga demasiado grande, y continuar con un motor más pequeño. De lo contrario, tal y como ocurre con el transbordador espacial y el cohete Atlas original, algunos motores de cohetes se apagan o desprenden, mientras que los otros continúan operando. |
Siguiente parada: (18a) Tercera Ley de Newton
Línea del Tiempo Glosario De regreso a la Lista Maestra
Autor y Curador: Dr. David P. Stern
Correo al Dr. Stern: stargaze("at" symbol)phy6.org .
Traducción al Español por Horacio Chávez
Última actualización: 6 de Junio de 2004